Urban Thermal Comfort: Analyzing the Impact of 'Reviva Centro' Revitalization on Campo Grande's Urban Microclimate

Authors

  • Amanda Ramos Goulart Instituto Universitário de Lisboa, Lisboa
  • Camila Amaro de Souza Universidade Federal de Mato Grosso do Sul (UFMS), Mato Grosso do Sul
  • Caio Frederico e Silva Universidade de Brasília (UNB), Brasília

DOI:

https://doi.org/10.37497/2965-730X.SDGsReview.v1.n00.pe01580

Keywords:

Urban Revitalization, Green Infrastructure, Thermal Comfort, Campo Grande, Brazil, Microclimatic Simulation

Abstract

This study evaluates the impact of green infrastructure as a strategy for mitigating the adverse effects of urbanization and enhancing outdoor thermal comfort. Focusing on the 'Reviva Centro' urban revitalization project in downtown Campo Grande, Mato Grosso do Sul, Brazil, the research compares two scenarios along '14 de Julho' street: the pre-revitalization state and the post-implementation condition. Utilizing the Envi-met program for 3D modeling and microclimatic simulation, this study examines the interplay between urban surfaces, vegetation, and atmospheric conditions, analyzing four key variables: temperature, relative humidity, wind speed, and direction. The assessment of outdoor human thermal comfort is based on the equivalent physiological temperature (PET).

The simulation results indicate a significant improvement in thermal comfort both during cold and hot times of the day. At 8 am, an increase in air temperature by 6°C was observed, reducing discomfort from cold. Conversely, at 4 pm, a decrease in air temperature by 4.98°C was noted, enhancing comfort in the post-revitalization scenario. These findings underscore the effectiveness of urban vegetation in regulating the urban microclimate and improving pedestrian comfort, demonstrating its critical role in urban environmental strategies."

Downloads

Download data is not yet available.

Author Biographies

Amanda Ramos Goulart, Instituto Universitário de Lisboa, Lisboa

PhD student in Architecture of Contemporary Metropolitan Territories at the University Institute of Lisbon (Instituto Universitário de Lisboa), Lisbon, Portugal; Master in Sustainable Urbanism and Spatial Planning from Universidade Nova de Lisboa, Lisbon, Portugal; Urbanist Architect by Anhanguera Uniderp, Campo Grande, Brazil.

Camila Amaro de Souza, Universidade Federal de Mato Grosso do Sul (UFMS), Mato Grosso do Sul

Doctor in Environmental Technologies at the Federal University of Mato Grosso do Sul (Universidade Federal de Mato Grosso do Sul), Pioneiros, Brazil; Master in Environment and Regional Development, Anhanguera Uniderp, Campo Grande, Brazil; Graduated in Architecture and Urbanism from the University of Brasília (Universidade de Brasília), Brasília, Brazil; Professor of the Architecture and Urbanism course and in the postgraduate courses in Environmental Comfort and Sustainability, Work Safety Engineering at Anhanguera

Caio Frederico e Silva, Universidade de Brasília (UNB), Brasília

Architect and Master and Doctor in Architecture and Urbanism, University of Brasília (Universidade de Brasília), Brasília, Brazil. He is currently a Professor and Coordinator of the Postgraduate Program at the same institution.

References

Américo , J. C. da S. (2019). Corporate covernance and performance in agricultural co-operatives in Brazil . Review of Sdgs in Emerging Countries, 1(00), e13. https://doi.org/10.37497/2965-7393.SDGs-Countries.v1.n00.13

ANTOSZEWSKI, P.; SWIERK, D.; KRZYZANIAK, M. Statistical review of quality parameters of blue-green infrastructure elements important in mitigating the effect of the urban heat island in the temperate climate (C) zone. International Journal of Environmental Research and Public Health, Vol. 17, No. 19, 1–36, 2020. https://doi.org/10.3390/ijerph17197093

BENEDICT, M.A.; MCMAHON, E.T. Green Infrastructure: Linking Landscapes and Communities. No place: Island Press, 2006.

BENTON-SHORT, L.; KEELEY, M.; ROWLAND, J. Green infrastructure, green space, and sustainable urbanism: geography’s important role. Urban Geography, Vol. 40, No. 3, 330–351,2019. https://doi.org/10.1080/02723638.2017.1360105

BOLUND, P.; HUNHAMMAR, S. Ecosystem services in urban areas. No place: no publisher, 1999.

BRUSE, M. ENVI-met 3.0: Updated Model Overview. No. March, 1–12, 2004.

BRUSE, M.; FLEER, H. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, Vol. 13, 373–384, 1998. https://doi.org/10.1016/S1364-8152(98)00042-5

Cavalcanti, B. P. B. C., Arruda, Y. M. B. C., & Cavalcanti, L. R. B. (2021). Urban Afforestation in Manaus: Spatial Analysis and Biodiversity Assessment of City Squares. Journal of Lifestyle and SDGs Review, 1(00), e01579. https://doi.org/10.37497/2965-730X.SDGsReview.v1.n00.pe01579

CHAROENKIT, S.; YIEMWATTANA, S. Living walls and their contribution to improved thermal comfort and carbon emission reduction: A review. Building and Environment, Vol. 105, 82–94, 2016. https://doi.org/10.1016/j.buildenv.2016.05.031

CODER, K. Identified benefits of community trees & forests. 2011. No place: no publisher, 2011.

DEMUZERE, M.; ORRU, K.; HEIDRICH, O.; OLAZABAL, E.; GENELETTI, D.; ORRU, H.; BHAVE,A. G.; MITTAL, N.; FELIU, E.; FAEHNLE, M. Mitigating and adapting to climate change: Multi- functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, Vol. 146, 107–115, 2014. http://dx.doi.org/10.1016/j.jenvman.2014.07.025

ELLIOTT, H.; EON, C.; BREADSELL, J.K. Improving city vitality through urban heat reduction with green infrastructure and design solutions: A systematic literature review. Buildings, Vol. 10, No. 12, 1–30, 2020. https://doi.org/10.3390/buildings10120219

ERELL, E. Urban Greening and Microclimate Modification. In: TAN, Puay Yok; JIM, Chi Yung (Eds.). Greening Cities: Forms and Functions. Singapore: Springer Singapore, 2017, 73–93. https://doi. org/10.1007/978-981-10-4113-6_4

EVOLA, G; GAGLIANO, A; FICHERA, A; MARLETTA, L; MARTINICO, F; NOCERA, F; PAGANO, A.UHI effects and strategies to improve outdoor thermal comfort in dense and old neighbourhoods. 134., 2017., 9th International Conference on Sustainability and Energy in Buildings(SEB), Chania, GREECE, JUL 05-07, 2017. Sustainability in Energy and Buildings 2017 [...]. No place: no publisher, 2017. Vol. 134, 692–701. https://doi.org/10.1016/j.egypro.2017.09.589

FERNANDES, M.T.L.C. Memorial do Projeto de Paisagismo Requalificação da Rua 14 de Julho. 2015.

FREDERICO, C.; SALES, G.L; CRONEMBERGER, J.; GARCIA, A.; HUELVA, E. Simulação ,Ambiente e Energia no Espaço Construído. Brasília: Editora Universidade de Brasília Direitos, 2020.

GOOGLE MAPS. 2018. Available at: https://www.google.com/maps/@-20.4633814,-- 54.6172036, 3a,75y,174.05h,86.42t/data=!3m7!1e1!3m5!1sWHZXmCDdCrKs6CkiLMDl-GA!2e0!5s20201001T000000!7i13312!8i6656. Accessed on: Aug 5, 2021.

HOPPE, P. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International journal of biometeorology, Vol. 43, No. 2, 71–75, 1999. https://doi.org/10.1007/s004840050118

HUNTER, R. F.; CLELAND, C.; CLEARY, A.; DROOMERS, M.; WHEELER, B. W.; SINNETT, D.;NIEUWENHUIJSEN, M. J.; BRAUBACH, M. Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. Environment International, Vol. 130, 104923, 2019. https://doi.org/10.1016/j.envint.2019.104923

JAMEI, E.; RAJAGOPALAN, P.; SEYEDMAHMOUDIAN, M.; JAMEI, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, Vol. 54, 1002–1017, 2016. https://doi.org/10.1016/j.rser.2015.10.104

KLEEREKOPER, L.; TALEGHANI, M.; VAN DEN DOBBELSTEEN, A.; HORDIJK, T. Urban measures for hot weather conditions in a temperate climate condition: A review study. Renewable and Sustainable Energy Reviews, Vol. 75, 515–533, 2017. http://dx.doi.org/10.1016/j.rser.2016.11.019

LAI, D.; LIU, W.; GAN, T.; LIU, K; CHEN, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, Vol. 661, 337–353, 2019. https://doi.org/10.1016/j.scitotenv.2019.01.062

LEE, L.S.H.; JIM, C.Y. Urban woodland on intensive green roof improved outdoor thermal comfort in subtropical summer. International Journal of Biometeorology, Vol. 63, No. 7, 895–909, 2019. https://doi.org/10.1007/s00484-019-01702-4

LIBERALESSO, T.; OLIVEIRA CRUZ, C.; MATOS SILVA, C.; MANSO, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy, Vol. 96, 104693, 2020. https://doi.org/10.1016/j.landusepol.2020.104693

LIN, P.; GOU, Z.; LAU, S.S.Y.; QIN, H. The impact of urban design descriptors on outdoor thermal environment: A literature review. Energies, Vol. 10, No. 12, 1–19, 2017. https://doi.org/10.3390/ en10122151

LIU, Z.; BROWN, R.D.; ZHENG, S.; JIANG, Y.; ZHAO, L. An in-depth analysis of the effect of trees on human energy fluxes. Urban Forestry and Urban Greening, Vol. 50, 126646, 2020. https:// doi.org/10.1016/j.ufug.2020.126646

LUCCHESE, J. Application of selected indices on outdoor thermal comfort assessment in Midwest Brazil. International Journal of Energy and Environment, Vol. 7, No. 4, 291–302, 2016.

MONTEIRO, M. V.; BLANUŠA, T.; VERHOEF, A.; HADLEY, P.; CAMERON, R.W. F. Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Australian Journal of Botany, Vol. 64, No. 1, 32, 2016. https://doi.org/10.1071/BT15198

MORAKINYO, T.E.; LAI, A.; LAU, K.K.L; NG, E. Thermal benefits of vertical greening in a high- density city: Case study of Hong Kong. Urban Forestry & Urban Greening, Vol. 37, 42–55, Jan. 1st, 2019. https://doi.org/10.1016/j.ufug.2017.11.010

MORAKINYO, T.E.; LAU, K.K.L.; REN, C.; NG, E. Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort and energy saving. Building and Environment, Vol. 137, 157–170, 2018. https://doi.org/10.1016/j.buildenv.2018.04.012

OKE, T.R. Boundary layer climates. 2nd ed. No place: no publisher, 1987.

POTCHTER, O.; COHEN, P.; LIN, T.P; MATZARAKIS, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment, Vol. 631–632, 390–406, 2018. https://doi.org/10.1016/j. scitotenv.2018.02.276

REIS, C.; LOPES, A. Evaluating the cooling potential of urban green spaces to tackle urban climate change in Lisbon. Sustainability (Switzerland), Vol. 11, No. 9, 2019. https://doi.org/10.3390/ su11092480

SANTAMOURIS, M.; OSMOND, P. Increasing green infrastructure in cities: impact on ambient temperature, air quality and heat-related mortality and morbidity. Buildings, Vol. 10, No. 12, 2020. https://doi.org/10.3390/buildings10120233

SILVA, B.; ADÁRIO, J; SILVA, C. Aplicação do Arquivo Climático na Análise do Microclima Urbano da Cidade de Juiz de Fora – Minas Gerais, 2º Seminário de Pesquisa em Ambiente Construído. Juiz de Fora, Brasil. 2019.

SOUZA, C.A.; PARANHOS FILHO, A.C.; GUARALDO, E. Resumo de tese: Determinação do campo térmico a partir da classificação da paisagem dos ambientes climáticos intraurbanos. MIX Sustentável, Vol. 6, No. 4, 167–168, 2020. https://doi.org/10.29183/2447-3073.mix2020

TALEGHANI, M.; KLEEREKOPER, L.; TENPIERIK, M.; VAN DEN DOBBELSTEEN, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, Vol. 83, 65–78, 2015. http://dx.doi.org/10.1016/j.buildenv.2014.03.014

TAN, P. Y.; JIM, C.Y (eds). Greening Cities Forms and Functions. No place: no publisher, 2017. https://doi.org/10.1007/978-981-15-3049-4

TSITOURA, M.; MICHAILIDOU, M.; TSOUTSOS, T. Achieving sustainability through the management of microclimate parameters in Mediterranean urban environments during summer. Sustainable Cities and Society, Vol. 26, 48–64, 2016. https://doi.org/10.1016/j.scs.2016.05.006

TSOKA, S.; TSIKALOUDAKI, K.; THEODOSIOU, T.; BIKAS, D. Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies-A Review. ENERGIES, Vol. 13, No. 6, 2020. https://doi.org/10.3390/en13061414

WALTHER, E.; GOESTCHEL, Q. The P.E.T. comfort index: Questioning the model. Building and Environment, Vol. 137, 1–10, 2018. https://doi.org/10.1016/j.buildenv.2018.03.054

YIN, S.; LANG, W.; XIAO, Y. The synergistic effect of street canyons and neighbourhood layout design on pedestrian-level thermal comfort in hot-humid area of China. Sustainable Cities and Society, Vol. 49, 101571, 2019. https://doi.org/10.1016/j.scs.2019.101571

Downloads

Published

2021-01-15

How to Cite

Goulart, A. R., Amaro de Souza, C., & Frederico e Silva, C. (2021). Urban Thermal Comfort: Analyzing the Impact of ’Reviva Centro’ Revitalization on Campo Grande’s Urban Microclimate. Journal of Lifestyle and SDGs Review, 1(00), e01580. https://doi.org/10.37497/2965-730X.SDGsReview.v1.n00.pe01580

Issue

Section

Artigos